4.5 Article

Transient kinetics of the reaction catalysed by magnesium protoporphyrin IX methyltransferase

期刊

BIOCHEMICAL JOURNAL
卷 382, 期 -, 页码 1009-1013

出版社

PORTLAND PRESS
DOI: 10.1042/BJ20040661

关键词

chlorophyll biosynthesis; magnesium protoporphyrin IX methyltransferase; methylation; porphyrin

向作者/读者索取更多资源

Magnesium protoporphyrin IX methyltransferase (Ch1M), an enzyme in the chlorophyll biosynthetic pathway, catalyses the transfer of a methyl group to magnesium protoporphyrin IX (MgP) to form magnesium protoporphyrin IX monomethyl ester (MgPME). S-Adenosyl-L-methionine is the other substrate, from which a methyl group is transferred to the propionate group on ring C of the porphyrin macrocycle. Stopped-flow techniques were used to characterize the binding of porphyrin substrate to Ch1M from Synechocystis PCC6803 by monitoring tryptophan fluorescence quenching on a millisecond timescale. We concluded that a rapid binding step is preceded by a slower isomerization of the enzyme. Quenched-flow techniques have been employed to characterize subsequent partial reactions in the catalytic mechanism. A lag phase has been identified that has been attributed to the formation of an intermediate. Our results provide a greater understanding of this catalytic process which controls the relative concentrations of MgP and MgPME, both of which are implicated in signalling between the plastid and nucleus in plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据