4.7 Article

Social self-sorting in aqueous solution

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 69, 期 19, 页码 6157-6164

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jo049976a

关键词

-

资金

  1. NIGMS NIH HHS [GM61854] Funding Source: Medline

向作者/读者索取更多资源

Self-sorting-the ability to efficiently distinguish between self and nonself-is common in nature but is still relatively rare in synthetic supramolecular systems. We report a 12-component mixture comprising 1-11 and KCl that undergoes thermodynamically controlled self-sorting in aqueous solution based on metal-ligand, ion-dipole, electrostatic, charge-transfer interactions, as well as the hydrophobic effect. We refer to this molecular ensemble-characterized by high-fidelity host-guest interactions between components-as a social self-sorting system to distinguish it from narcissistic self-sorting systems based on self-association processes. The influence of several key variables-temperature, pH, concentration, and host/guest stoichiometry-was explored by a combination of simulation and experiment. Variable temperature NMR experiments, for example, revealed a kinetically controlled irreversible process upon cycling from 298 to 338 K, which is an emergent property of this molecular ensemble. Variable pH and concentration experiments, in contrast, did not reveal any emergent properties of the molecular ensemble. Simulations of a four-component mixture establish that by proper control of the relative magnitude of the various equilibrium constants, it is possible to prepare socially self-sorted mixtures that are responsive (irresponsive) to host/guest stoichiometry over narrow (broad) ranges. The 12-component mixture is relatively irresponsive to host/guest stoichiometry. Such social self-sorting systems, like their natural counterparts, have potential applications as chemical sensors, as artificial regulatory elements, and in the preparation of biomimetic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据