4.4 Article

Metabolic functionalization of recombinant glycoproteins

期刊

BIOCHEMISTRY
卷 43, 期 38, 页码 12358-12366

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi049274f

关键词

-

资金

  1. NIGMS NIH HHS [GM58867] Funding Source: Medline

向作者/读者索取更多资源

Glycoproteins are essential for cellular communication and are the most rapidly growing class of therapeutic agents. Chemical modification of glycoproteins has been employed to improve their in vivo efficacy or to label them for detection. Methods for the controlled derivatization of glycoproteins are presently limited by the repertoire of natural amino acid side chain and carbohydrate functionalities. Here, we use metabolic oligosaccharide engineering to introduce a bioorthogonal functional group, the azide, into cellular and recombinant glycoproteins for subsequent chemical elaboration via Staudinger ligation. As most therapeutic glycoproteins are sialylated and require this saccharide for optimal pharmacokinetics, we targeted sialic acid as a host for azides using N-azidoacetylmannosamine (ManNAz) as a biosynthetic precursor. Metabolic conversion of ManNAz to N-azidoacetylsialic acid (SiaNAz) within membrane-bound and secreted glycoproteins was quantified in a variety of cell types. SiaNAz was found to comprise between 4% and 41% of total sialosides, depending on the system. Metabolic labeling of recombinant interferon-beta and G1yCAM-Ig was achieved, demonstrating the utility of the method for functionalizing N-linked and O-linked glycoproteins of therapeutic interest. More generally, the generation of recombinant glycoproteins containing chemical handles within their glycans provides a means for studying their behavior and for improving their in vivo efficacy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据