4.6 Article

Photoinduced cooling of polyatomic molecules in an electronically excited state in the presence of Dushinskii rotations

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 108, 期 39, 页码 7778-7784

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp037739q

关键词

-

向作者/读者索取更多资源

We present a theoretical study of the effect of Dushinskii rotations on the vibrational population created in an excited electronic state through photoexcitation. Special attention is given to the effect of Dushinskii rotations on the possibility of cooling the vibrational population in the excited state, relative to the thermal distribution in the ground state. The absorption spectrum and corresponding average energy in the excited state are calculated using a closed-form expression for the harmonic correlation function between the ground and excited electronic states, which includes the effects of Dushinskii rotations, equilibrium position shifts, and frequency shifts between the excited- and ground-electronic-state normal modes. We investigate numerically the separate and joint effects of rotation, position shifts, and frequency shifts on the absorption spectrum and average vibrational energy in the excited electronic state. We find that, although the Dushinskii rotations generally diminish the cooling effect, the effect does not disappear and, in some cases, may also increase slightly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据