4.5 Article

Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects

期刊

出版社

SPRINGER
DOI: 10.1023/B:JMSM.0000046393.81449.a5

关键词

-

向作者/读者索取更多资源

The growing interest in scaffold-guided tissue engineering (TE) to guide and support cell proliferation in the repair and replacement of craniofacial and joint defects gave rise to the quest for a precise technique to create such scaffolds. Conventional manual-based fabrication techniques have several limitations such as the lack of reproducibility and precision. Rapid prototyping (RP) has been identified as a promising technique capable of building complex objects with pre-defined macro- and microstructures. The research focussed on the viability of using the selective laser sintering (SLS) RP technique for creating TE scaffolds. A biocomposite blend comprising of polyvinyl alcohol (PVA) and hydroxyapatite (HA) was used in SLS to study the feasibility of the blend to develop scaffolds. The biocomposite blends obtained via spray-drying technique and physical blending were subjected to laser-sintering to produce test specimens. The SLS-fabricated test specimens were characterized using scanning electron microscopy and X-ray diffraction. The test specimens were also tested for bioactivity by immersing the samples in simulated body fluid environment. The results obtained ascertained that SLS-fabricated scaffolds have good potential for TE applications. (C) 2004 Kluwer Academic Publishers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据