4.7 Article

Degradation of neuronal function following a spinal cord injury:: mechanisms and countermeasures

期刊

BRAIN
卷 127, 期 -, 页码 2221-2231

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awh255

关键词

spinal cord injury (SCI); human locomotion; neuronal plasticity; locomotor training; leg muscle activity

向作者/读者索取更多资源

The aim of this study was to evaluate the course of spinal neuronal activity following spinal cord injury (SCI). In patients with a complete SCI, the leg muscle EMG activity early and up to 33 years after an SCI was analysed during locomotor movements induced and assisted by a driven gait orthosis (DGO). Only in chronic SCI patients did a premature exhaustion of neuronal activity occur. This was reflected in a reduced density and fading of leg muscle EMG activity. The early exhaustion of EMG activity was more pronounced in the leg flexor (e.g. biceps femoris) than extensor (e.g. gastrocnemius) muscles. The timing of the leg muscle pattern remained unchanged in the chronic patients. A preserved amplitude of motor action potentials following repetitive peripheral nerve stimulation and during spasms indicated an interneuronal site of impairment. In patients who participated in a locomotor training programme lasting up to 13 weeks, no positive effect on the slope of exhaustion was seen. It is concluded that a degradation of spinal neuronal activity takes place following an SCI. If in the future regeneration of spinal tract fibres becomes feasible in patients with complete SCI, such an approach can only become functionally successful if neuronal activity below the level of the lesion is maintained. This might be achieved by a continuous training approach starting early after injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据