4.7 Article

Study of diatoms/aqueous solution interface.: I.: Acid-base equilibria and spectroscopic observation of freshwater and marine species

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 68, 期 20, 页码 4039-4058

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2004.01.011

关键词

-

向作者/读者索取更多资源

This work reports on a concerted study of diatom-water interfaces for two marine planktonic (Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species (Achnanthidium minutissimum = AMIN, Navicula minima = NMIN). Proton surface adsorption was measured at 25degreesC, pH of 3 to 11 and ionic strength of 0.001 to 1.0 M via potentiometric titration using a limited residence time reactor. Electrophoretic mobility of living cells and their frustules was measured as a function of pH and ionic strength. Information on the chemical composition and molecular structure of diatoms surfaces was obtained using FT-IR (in situ attenuated total reflectance) and X-ray Photoelectron Spectroscopy (XPS). The surface area of living cells and their frustules in aqueous solutions was quantified using Small Angle X-ray Scattering Spectroscopy (SAXS). These observations allowed us to identify the nature and to determine the concentration of the major surface functional groups (carboxyl, amine and silanol) responsible for the amphoteric behavior of cell surfaces in aqueous solutions. Taking into account the relative proportion of surface sites inferred from XPS and FT-IR measurements, a surface complexation model of diatom-solution interfaces was generated on the basis of surface titration results. The cell-normalized ratios of the three major surface sites {>COOH}: {>NH3}: {>SiOH} are 1:1:0.1, 1:10:0, 1:1:0.4 and 1:1:0.3 for TW, SC, AMIN and NMIN, respectively. The total amount of proton/hydroxyl active surface sites for investigated species ranges from 1 (NMIN) to 9 (SC) mmol/g dry weight. Normalization of these site densities to the area of siliceous skeleton yields values between 0.3 (NMIN) and 0.9 mmol/m(2) (SC) which are an order of magnitude higher than corresponding values for organic-free frustules or amorphous silica. This suggests that the amphoteric properties and possibly the affinity for metal adsorption of diatom cultures are essentially controlled by the 3-D organic layers covering the silica frustule. Copyright (C) 2004 Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据