4.2 Article Proceedings Paper

Small and large scale granular statics

期刊

GRANULAR MATTER
卷 6, 期 2-3, 页码 87-96

出版社

SPRINGER
DOI: 10.1007/s10035-004-0165-y

关键词

granular response; elasticity; coarse-graining

向作者/读者索取更多资源

Recent experimental results on the static or quasistatic response of granular materials have been interpreted to suggest the inapplicability of the traditional engineering approaches, which are based on elasto-plastic models (which are elliptic in nature). Propagating (hyperbolic) or diffusive (parabolic) models have been proposed to replace the old models. Since several recent experiments were performed on small systems, one should not really be surprised that (continuum) elasticity, a macroscopic theory, is not directly applicable, and should be replaced by a grain-scale (microscopic) description. Such a description concerns the interparticle forces, while a macroscopic description is given in terms of the stress field. These descriptions are related, but not equivalent, and the distinction is important in interpreting the experimental results. There are indications that at least some large scale properties of granular assemblies can be described by elasticity, although not necessarily its isotropic version. The purely repulsive interparticle forces (in non-cohesive materials) may lead to modifications of the contact network upon the application of external forces, which may strongly affect the anisotropy of the system. This effect is expected to be small (in non-isostatic systems) for small applied forces and for pre-stressed systems (in particular for disordered systems). Otherwise, it may be accounted for using a nonlinear, incrementally elastic model, with stress-history dependent elastic moduli. Although many features of the experiments may be reproduced using models of frictionless particles, results demonstrating the importance of accounting for friction are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据