4.6 Article

Positive selection in MAOA gene is human exclusive:: determination of the putative amino acid change selected in the human lineage

期刊

HUMAN GENETICS
卷 115, 期 5, 页码 377-386

出版社

SPRINGER
DOI: 10.1007/s00439-004-1179-6

关键词

-

向作者/读者索取更多资源

Monoamine oxidase A (MAOA) is the X-linked gene responsible for deamination and subsequent degradation of several neurotransmitters and other amines. Among other activities, the gene has been shown to play a role in locomotion, circadian rhythm, and pain sensitivity and to have a critical influence on behavior and cognition. Previous studies have reported a non-neutral evolution of the gene attributable to positive selection in the human lineage. To determine whether this selection was human-exclusive or shared with other species, we performed a population genetic analysis of the pattern of nucleotide variation in non-human species, including bonobo, chimpanzee, gorilla, and orangutan. Footprints of positive selection were absent in all analyzed species, suggesting that positive selection has been recent and unique to humans. To determine which human-unique genetic changes could have been responsible for this differential evolution, the coding region of the gene was compared between human, chimpanzee, and gorilla. Only one human exclusive non-conservative change is present in the gene: Glu151Lys. This human substitution affects protein dimerization according to a three-dimensional structural model that predicts a non-negligible functional shift. This is the only candidate position at present to have been selected to fixation in humans during an episode of positive selection. Divergence analysis among species has shown that, even under positive selection in the human lineage, the MAOA gene did not experience accelerated evolution in any of the analyzed lineages, and that tools such as K-a/K-s would not have detected the selective history of the gene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据