4.7 Article Proceedings Paper

Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 36, 期 10, 页码 1559-1568

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2004.07.003

关键词

enzyme activities; xeric moisture regime; Mediterranean region; heavy metals; soil pollution; rewetting pre-treatment

向作者/读者索取更多资源

Heavy metal contamination can inhibit soil functions but it is often difficult to determine the degree of pollution or when soil reclamation is complete. Enzyme assays offer potential as indicators of biological functioning of soils. However, antecedent water content of soil samples may affect the outcome of biological measurements. In Mediterranean regions, for much of the year 'field moist' surface soil can have water content similar to that of air-dry samples. The objectives of this study were to: (1) determine the sensitivity of a range of enzyme assays to detect the degree of pollution from a heavy metal mine spill; (2) evaluate rewetting field-dry soil as a pre-treatment for enzyme assays; and (3) test multivariate analysis for improving discrimination between polluted, reclaimed and non-polluted soils. The Aznalcollar mining effluent spill provided a unique opportunity to address these objectives. This accident released toxic, heavy metal-contaminated (As, Bi, Cd, Cu, Ph, Tl, Zn...) and acid tailings into the Guadiamar watershed (SW Spain) in 1998, severely affecting the riparian zone along more than 4000 ha. Contaminated soils were collected from the highly polluted upper watershed and less polluted lower watershed along with reclaimed soil at both sites. Enzyme activities (phosphatases, arylsulfatase, beta-glucosidase, urease and dehydrogenase) were assessed on both field-moist samples and soils rewetted to 80% of water-holding capacity and then incubated at 21 degreesC for 7 d prior to the assay. The reclaimed soils had higher activities than polluted soils but, typically, 1.5-3 times lower levels of activity than the non-polluted soil. Regardless of the moisture pre-treatment, all enzymes showed significant effects due to pollution, with urease and beta-glucosidase showing the greatest discrimination between degrees of contamination. In general, rewetting field-dried soils increased activities on non-polluted and reclaimed soils which improved discrimination with polluted soils. Another method to increase the potential of soil enzyme activities to detect soil contamination could be to combine them in multivariate analysis, which provides a more holistic representation of the biochemical and microbial functionality of a soil. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据