4.5 Article

Time-resolved detection of sensory rhodopsin II-transducer interaction

期刊

BIOPHYSICAL JOURNAL
卷 87, 期 4, 页码 2587-2597

出版社

CELL PRESS
DOI: 10.1529/biophysj.104.043521

关键词

-

向作者/读者索取更多资源

The dynamics of protein conformational change of Natronobacterium pharaonis sensory rhodopsin II (NpSRII) and of NpSRII fused to cognate transducer (NpHtrII) truncated at 159 amino acid sequence from the N-terminus (NpSRII-DeltaNpHtrII) are investigated in solution phase at room temperature by the laser. ash photolysis and the transient grating methods in real time. The diffusion coefficients of both species indicate that the NpSRII-DeltaNpHtrII exists in the dimeric form in 0.6% dodecyl-beta-maltopyranoside (DM) solution. Rate constants of the reaction processes in the photocycles determined by the transient absorption and grating methods agree quite well. Significant differences were found in the volume change and the molecular energy between NpSRII and NpSRII-DeltaNpHtrII samples. The enthalpy of the second intermediate (L) of NpSRII-DeltaNpHtrII is more stabilized compared with that of NpSRII. This stabilization indicates the influence of the transducer to the NpSRII structure in the early intermediate species by the complex formation. Relatively large molecular volume expansion and contraction were observed in the last two steps for NpSRII. Additional volume expansion and contraction were induced by the presence of DeltaNpHtrII. This volume change, which should reflect the conformational change induced by the transducer protein, suggested that this is the signal transduction process of the NpSRII-DeltaNpHtrII.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据