4.6 Article

Residues Lys-149 and Glu-153 switch the aminoacylation of tRNATrp in Bacillus subtilis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 40, 页码 41960-41965

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M401937200

关键词

-

向作者/读者索取更多资源

Tryptophanyl-tRNA synthetase (TrpRS) consists of two identical subunits that induce the cross-subunit binding mode of tRNA(Trp). It has been shown that eubacterial and eukaryotic TrpRSs cannot efficiently cross-aminoacylate the corresponding tRNATrp. Although the identity elements in tRNA(Trp) that confer the species-specific recognition have been identified, the corresponding elements in TrpRS have not yet been reported. In this study two residues, Lys-149 and Glu-153, were identified as being crucial for the accurate recognition of tRNA(Trp). These residues reside adjacent to the binding pocket for Trp-AMP and show phylogenic diversities in the charge on their side chains between eubacteria and eukaryotes. Single mutagenesis at Lys-149 or Glu-153 reduced the activity of TrpRS in the activation of Trp. The reduction was less than that caused by the double mutant WBHA (K149D/E153R). It is unusual that E153G had no detectable activity in the activation of Trp unless tRNA(Trp) was added to the reaction. In addition, we successfully switched the species specificity of Bacillus subtilis TrpRS recognition of tRNATrp. The affinity of WBHA, K149E and E153K to human tRNA(Trp) was 31-, 13.5-, and 12.9-fold greater than that of wild type B. subtilis TrpRS, respectively. Indeed WBHA and E153K were found to prefer genuine human tRNA(Trp) to their cognate eubacteria tRNA(Trp).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据