4.5 Article

Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 52, 期 4, 页码 724-732

出版社

WILEY
DOI: 10.1002/mrm.20221

关键词

spin-echo fMRI; diffusion-weighting; BOLD; quantification

向作者/读者索取更多资源

Functional MRI (fMRI) by means of spin-echo (SE) techniques provides an interesting alternative to gradient-echo methods because the contrast is based primarily on dynamic averaging associated with the blood oxygenation level-dependent (BOLD) effect. In this article the contributions from different brain compartments to BOLD signal changes in SE echo planar imaging (EPI) are investigated. To gain a better understanding of the underlying mechanisms that cause the fMRI contrast, two experiments are presented: First, the intravascular contribution is decomposed into two fractions with different regimes of flow by means of diffusion-weighting gradient schemes which are either flow-compensated, or will maximally dephase moving spins. Second, contributions from the intra- and extravascular space are selectively suppressed by combining flow-weighting with additional refocusing pulses. The results indicate two qualitatively different components of flowing blood which contribute to the BOLD contrast and a nearly equal share in functional signal from the intra- and extravascular compartments at TE approximate to 80 ms and 3 T. Combining these results, there is evidence that at least one-half of the functional signal originates from the parenchyma in SE fMRI at 3 T. The authors suggest the use of flow-compensated diffusion weighting for SE fMRI to improve the sensitivity to the parenchyma. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据