4.3 Review

The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture

期刊

CURRENT OPINION IN LIPIDOLOGY
卷 15, 期 5, 页码 575-582

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00041433-200410000-00012

关键词

sudden coronary death; versican; hyaluronan; erosion; thrombosis

资金

  1. NHLBI NIH HHS [R01 HL71148-01, R01 HL-18645, R01 HL61799-02] Funding Source: Medline

向作者/读者索取更多资源

Purpose of review Although fibrous cap rupture is the primary cause of coronary thrombosis, plaque erosion is responsible for 30%-40% of acute thrombotic events. The interface of the eroded surface involves a denuded endothelium allowing direct contact of the platelet/fibrin thrombus with the underlying lesion. This review discusses the putative role of extracellular matrix molecules, in particular proteoglycans/hyaluronan, in the development of acute coronary thrombosis associated with erosion. Recent findings The plaque/thrombus interface in erosion presents a unique surface since it consists of predominantly SMCs and proteoglycans with minimal or no inflammation. The lack of significant inflammation raises the possibility that erosion represents chronic wounding rather than true atherogenesis. The abundance of proteoglycan and hyaluronan matrix suggests their potential role in the development of thrombosis. Matrix changes may contribute to endothelial loss, the magnitude of the thrombotic event, or both. Versican facilitates platelet adhesion at low shear and cooperates with collagen to promote platelet aggregation. Further, versican may, in part, regulate water content and in turn support coagulation because water-dependent functionality of anticoagulation molecules. Finally, experimental models of plaque erosion are currently being developed guided by the premise that the loss of surface endothelium together with other procoagulant factors may underlie the development of platelet-rich thrombi. Summary The loss of endothelium and exposure of a potentially procoagulant versican-hyaluronan matrix may be largely responsible for plaque erosion. The development of relevant animal models should allow further insight into the pathophysiology of coronary thrombosis in the absence of rupture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据