4.7 Article

Gene loss and movement in the maize genome

期刊

GENOME RESEARCH
卷 14, 期 10A, 页码 1924-1931

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.2701104

关键词

-

向作者/读者索取更多资源

Maize (Zea mays L. ssp. mays), one of the most important agricultural crops in the world, originated by hybridization of two closely related progenitors. To investigate the fate of its genes after tetraploiclization, we analyzed the sequence of five duplicated regions from different chromosomal locations. We also compared corresponding regions from sorghum and rice, two important crops that have largely collinear maps with maize. The split of sorghum and maize progenitors was recently estimated to be 11.9 Mya, whereas rice diverged from the common ancestor of maize and sorghum similar to50 Mya. A data set of roughly 4 Mb yielded 206 predicted genes from the three species, excluding any transposon-related genes, but including eight gene remnants. On average, 14% of the genes within the aligned regions are noncollinear between any two species. However, scoring each maize region separately, the set of noncollinear genes between all four regions jumps to 68%. This is largely because at least 50% of the duplicated genes from the two progenitors of maize have been lost over a very short period of time, possibly as short as 5 million years. Using the nearly completed rice sequence, we found noncollinear genes in other chromosomal positions, frequently in more than one. This demonstrates that many genes in these species have moved to new chromosomal locations in the last SO million years or less, most as single gene events that did not dramatically alter gene structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据