4.7 Article

Analysis of human topoisomerase I inhibition and interaction with the cleavage site+1 deoxyguanosine, via in vitro experiments and molecular modeling studies

期刊

BIOORGANIC & MEDICINAL CHEMISTRY
卷 12, 期 19, 页码 5225-5235

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2004.06.046

关键词

-

向作者/读者索取更多资源

Human topoisomerase I (Top1) plays a pivotal role in cell replication and transcription, and therefore is an important anti-cancer target. Homocamptothecin is a lead compound for inhibiting Top1, and is composed of five conjugated planar rings (A-E). The homocamptothecin E-ring beta-hydroxylactone opens slowly to a carboxylate at pH > 7.0. We analyzed, which form of homocamptothecin was biochemically relevant in the following ways: (1) the homocamptothecin carboxylate was tested for activity in vitro and found to be inactive; (2) homocamptothecin was incubated with Top1 and dsDNA, and we found that the homocamptothecin beta-hydroxylactone form was stabilized; (3) the homocamptothecin E-ring beta-hydroxylactone was modified to prevent opening, and the derivatives were either inactive or had low activity. These results indicated that the homocamptothecin beta-hydroxylactone was the active form, and that an E-ring carbonyl oxygen and adjacent unsubstituted/unprotonated ring atom were required for full activity. Homocamptothecin and derivatives were docked into a Top1/DNA active site model, in which the +1 deoxyguanosine was rotated out of the helix, in order to compare the interaction energies between the ligands and the Top1/DNA active site with the in vitro activities of the ligands. It was found that the ligand interaction energies and in vitro activities were correlated, while the orientations of the ligands in the Top1/DNA active site explained the importance of the E-ring beta-hydroxylactone independently of E-ring opening. An essential component of this Top1/DNA active site model is the rotated +1 deoxyguanosine, and in vitro experiments and molecular modeling studies supported rotation of the +1 deoxyguanosine out of the helix. These results allow for the rational design of more potent Top1 inhibitors through engineered interactions with as yet unutilized Top1 active-site residues including: Glu356, Asn430, and Lys751. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据