4.6 Article

Detrended fluctuation analysis of genome-wide copy number profiles of glioblastomas using array-based comparative genomic hybridization

期刊

NEURO-ONCOLOGY
卷 6, 期 4, 页码 281-289

出版社

OXFORD UNIV PRESS INC
DOI: 10.1215/S1152851703000632

关键词

-

向作者/读者索取更多资源

We examined whole genomic aberrations of biopsied samples from 19 independent glioblastomas by array-based comparative genomic hybridization analysis. The highest frequencies of copy number gains were observed on RFC2 (73.3%), EGFR (63.2%), and FGR, ELN, CDKN1C, FES, TOP2A, and ARSA (57.9% each). The highest frequencies of copy number losses were detected on TBR1 (52.6%), BMI1 (52.6%), EGR2 (47.4%), DMBT1 (47.4%), MTAP (42.1%), and FGFR2 (42.1%). The copy number gains of CDKN1C and INS and the copy number losses of TBR1 were significantly correlated with longer survival of patients. High-level amplifications were identified on EGFR, SAS/CDK4, PDGFRA, MDM2, and ARSA. These genes are assumed to be involved in tumorigenesis or progression of glioblastomas. The first attempts to apply detrended fluctuation analysis to copy number profiles by considering the reading direction as the time axis demonstrated that higher long-term fractal scaling exponents (alpha2) correlated well with longer survival of glioblastoma patients. The present study indicates that array-based comparative genomic hybridization analysis has great potential for assessment of copy number changes and altered chromosomal regions of brain tumors. Furthermore, we show that nonlinear analysis methods of whole genome copy number profiles may provide prognostic information about glioblastoma patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据