4.7 Article

Shuttle craft:: a candidate quantitative trait gene for Drosophila lifespan

期刊

AGING CELL
卷 3, 期 5, 页码 297-307

出版社

WILEY
DOI: 10.1111/j.1474-9728.2004.00114.x

关键词

allele-, sex- and genetic background-specific effects; genetics of aging; QTL mapping; quantitative complementation test

资金

  1. NIGMS NIH HHS [GM 45146] Funding Source: Medline

向作者/读者索取更多资源

Variation in longevity in natural populations is attributable to the segregation of multiple interacting loci, whose effects are sensitive to the environment. Although there has been considerable recent progress towards understanding the environmental factors and genetic pathways that regulate lifespan, little is known about the genes causing naturally occurring variation in longevity. Previously, we used deficiency complementation mapping to map two closely linked quantitative trait loci (QTL) causing female-specific variation in longevity between the Oregon (Ore) and 2b strains of Drosophila melanogaster to 35B9-C3 and 35C3 on the second chromosome. The 35B9-C3 QTL encompasses a 50-kb region including four genes, for one of which, shuttle craft (stc), mutations have been generated. The 35C3 QTL localizes to a 200-kb interval with 15 genes, including three genes for which mutations exist (reduced (rd), guftagu (gft) and ms(2)35Ci). Here, we report quantitative complementation tests to mutations at these four positional candidate genes, and show that ms(2)35Ci and stc are novel candidate quantitative trait genes affecting variation in Drosophila longevity. Complementation tests with stc alleles reveal sex- and allele-specific failure to complement, and complementation effects are dependent on the genetic background, indicating considerable epistasis for lifespan. in addition, a homozygous viable stc allele has a sex-specific effect on lifespan. stc encodes an RNA polymerase II transcription factor, and is an attractive candidate gene for the regulation of longevity and variation in longevity, because it is required for motoneuron development and is expressed throughout development. Quantitative genetic analysis of naturally occurring variants with subtle effects on lifespan can identify novel candidate genes and pathways important in the regulation of longevity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据