4.5 Article

Lipids from oxidized low-density lipoprotein modulate human trophoblast invasion:: Involvement of nuclear liver X receptors

期刊

ENDOCRINOLOGY
卷 145, 期 10, 页码 4583-4591

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2003-1747

关键词

-

向作者/读者索取更多资源

Human embryonic implantation involves major invasion of the uterine wall and remodeling of the uterine arteries by extravillous cytotrophoblast cells (EVCT). Abnormalities in these early steps of placental development lead to poor placentation and fetal growth defects and are frequently associated with preeclampsia, a major complication of human pregnancy. We recently showed that oxidized low-density lipoproteins (oxLDLs) are present in situ in EVCT and inhibit cell invasion in a concentration-dependent manner. The aim of the present study was to better understand the mechanisms by which oxLDL modulate trophoblast invasion. We therefore investigated the presence of oxLDL receptors in our cell culture model of human invasive primary EVCT. We found using immunocytochemistry and immunoblotting that the lectin-like oxLDL receptor-1 was the scavenger receptor mainly expressed in EVCT and was probably involved in oxLDL uptake. We next examined the effect of low-density lipoprotein oxidative state on trophoblast invasion in vitro using EVCT cultured on Matrigel-coated Transwell. We demonstrated that only oxLDL containing a high proportion of oxysterols and phosphatidylcholine hydroperoxide derivatives that provide ligands for liver X receptor (LXR) and peroxisomal proliferator-activated receptor gamma (PPARgamma), respectively, reduced trophoblast invasion. We next investigated the presence and the role of these nuclear receptors and found that in addition to PPARgamma, human invasive trophoblasts express LXRbeta, and activation of these nuclear receptors by specific synthetic or natural ligands inhibited trophoblast invasion. Finally, using a PPARgamma antagonist, we suggest that LXRbeta, rather than PPARgamma, is involved in oxLDL-mediated inhibition of human trophoblast invasion in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据