4.5 Article

Interleukin 2 (IL-2) variants engineered for increased IL-2 receptor α-subunit affinity exhibit increased potency arising from a cell surface ligand reservoir effect

期刊

MOLECULAR PHARMACOLOGY
卷 66, 期 4, 页码 864-869

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.66.4.864

关键词

-

向作者/读者索取更多资源

Proliferation of activated T cells and CD56 bright natural killer (Cytokine Growth Factor Rev 13: 169-183, 1995) cells caused by interleukin-2 (IL-2) has been exploited in IL-2-based therapies for the treatment of metastatic renal cell carcinoma and melanoma (J Clin Oncol 13:688-696, 1995; J Clin Oncol 17:2105-2116, 1999). In this study, we demonstrate the potentially improved therapeutic value of IL-2 variants engineered to gain 15- to 30-fold increased affinity for the IL-2 receptor alpha-subunit (IL-2Ralpha). A novel pulsed bioassay was used to more closely approximate the rapid systemic clearance pharmacokinetics of cytokines such as IL-2, compared with conventional static bioassays. In this assay, mutants with increased affinity for IL-2Ralpha exhibit significantly increased activity for T-cell proliferation, whereas static bioassays not only fail to reveal the increased activity resulting from enhanced IL-2Ralpha affinity (false negatives), but also suggest improved activity for another mutant without enhanced activity in the pulsed assay (false positive). Our studies on the mechanism leading to increased activity of IL-2 mutants with increased IL-2Ralpha affinity suggest that cell-surface IL-2Ralpha acts as a ligand reservoir for the IL-2 mutants. This leads to increased cell-surface persistence of the IL-2 mutants with increased IL-2Ralpha affinity in cell-surface ligand reservoirs and consequently increased integrated growth signal. Furthermore, a mathematical model predicts increased persistence of cell surface-bound IL-2 in vivo for enhanced IL-2Ralpha-binding IL-2 mutants, suggesting potentially improved therapeutic value of allowing cellular capture of ligands in persistent cell-surface reservoirs. Finally, our findings emphasize the critical choice of appropriate bioassays to evaluate engineered proteins and other drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据