4.7 Article

pH-dependent modulation of Kv1.3 inactivation:: role of His399

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 287, 期 4, 页码 C1067-C1076

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00438.2003

关键词

extracellular pH; potassium channel; histidine; barium; high ionic strength

向作者/读者索取更多资源

The Kv1.3 K+ channel lacks N-type inactivation, but during prolonged depolarized periods it inactivates via the slow (P/C type) mechanism. It bears a titratable histidine residue in position 399 ( equivalent of Shaker 449), a site known to influence the rate of slow inactivation. As opposed to several other voltage-gated K+ channels, slow inactivation of Kv1.3 is slowed when extracellular pH (pH(o)) is lowered under physiological conditions. Our findings are as follows. First, when His399 was mutated to a lysine, arginine, leucine, valine or tyrosine, extracellular acidification (pH 5.5) accelerated inactivation reminiscent of other Kv channels. Second, inactivation of the wild-type channel was accelerated by low pHo when the ionic strength of the external solution was raised. Inactivation of the H399K mutant was also accelerated by high ionic strength at pH 7.35 but not the inactivation of H399L. Third, after the external application of blocking barium ions, recovery of the wildtype current during washout was slower in low pHo. Fourth, the dissociation rate of Ba2+ was pH insensitive for both H399K and H399L. Furthermore, Ba2+ dissociation rates were equal for H399K and the wild type at pH 5.5 and were equal for H399L and the wild type at pH 7.35. These observations support a model in which the electric field of the protonated histidines creates a potential barrier for potassium ions just outside the external mouth of the pore that hinders their exit from the binding site controlling inactivation. In Kv1.3, this effect overrides the generally observed speeding of slow inactivation when pHo is reduced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据