4.6 Article

Systematic optimization of quantum junction colloidal quantum dot solar cells

期刊

APPLIED PHYSICS LETTERS
卷 101, 期 15, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4757866

关键词

-

资金

  1. King Abdullah University of Science and Technology (KAUST) [KUS-11-009-21]
  2. Ontario Research Fund Research Excellence Program
  3. Natural Sciences and Engineering Research Council (NSERC) of Canada
  4. NSERC CGS D Scholarship

向作者/读者索取更多资源

The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1% under AM1.5 simulated solar illumination. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757866]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据