4.4 Article

Threshold firing frequency - Current relationships of neurons in rat somatosensory cortex: Type 1 and type 2 dynamics

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 92, 期 4, 页码 2283-2294

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00109.2004

关键词

-

向作者/读者索取更多资源

Neurons and dynamical models of spike generation display two different types of threshold behavior, with steady current stimulation: type 1 [the firing frequency vs. current (f-I) relationship is continuous at threshold) and type 2 (discontinuous f-I)]. The dynamics at threshold can have profound effects on the encoding of input as spikes, the sensitivity of spike generation to input noise, and the coherence of population firing. We have examined the f-I and frequency-conductance (f-g) relationships of cells in layer 2/3 of slices of young (15-21 DIV) rat somatosensory cortex, focusing in detail on the nature of the threshold. Using white-noise stimulation, we also measured firing frequency and inter-spike interval variability as a function of noise amplitude. Regular-spiking (RS) pyramidal neurons show a type 1 threshold, consistent with their well-known ability to fire regularly at very low frequencies. In fast-spiking (FS) inhibitory interneurons, although regular firing is supported over a wide range of frequencies, there is a clear discontinuity in their f-I relationship at threshold (type 2), which has not previously been highlighted. FS neurons are unable to support maintained periodic firing below a critical frequency f(c), in the range of 10 to 30 Hz. Very close to threshold, FS cells switch irregularly between bursts of periodic firing and subthreshold oscillations. These characteristics mean that the dynamics of RS neurons are well suited to encoding inputs into low-frequency firing rates, whereas the dynamics of FS neurons are suited to maintaining and quickly synchronizing to gamma and higher-frequency input.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据