4.7 Article Proceedings Paper

Partial characterization of cytoprotective mechanisms of lecithin against bile salt-induced bile duct damage

期刊

JOURNAL OF GASTROENTEROLOGY
卷 39, 期 10, 页码 955-960

出版社

SPRINGER TOKYO
DOI: 10.1007/s00535-003-1432-0

关键词

cholangiocyte apoptosis; hydrophilic bile salts; egg yolk phosphatidylcholine; uncoupling phenomenon

向作者/读者索取更多资源

Background. We recently demonstrated that cyclosporine A causes a disproportionate reduction of biliary lipid secretion, and this is inhibited by hydrophilic bile salts through the enhancing of biliary lecithin secretion. In the present study, the underlying mechanism of such a cytoprotective action of hydrophilic bile salts was determined with attention to the possible role of lecithin. Methods. Immortalized mouse cholangiocytes were cultured for 4 h with taurine conjugates of a hydrophobic bile salt (cholate [TC]), and hydrophilic bile salts (ursodeoxycholate [TUDC], betamuricholate [TbetaMC], and alphamuricholate [TalphaMC]), at 200 muM, in the presence or absence of lecithin (5, 10, 25, 50, 100, or 200 muM), followed by flow cytometric detection of apoptosis, using Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. Cholangiocyte bile salt transporter mRNAs (apical sodium-dependent bile-salt transporter [Asbt] and multidrug resistance protein 3 [Mrp3]) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Results. Apoptosis was induced by all of the bile salts (TC > TUDC, TbetaMC, and TalphaMC). Interestingly, bile salt-induced apoptosis was inhibited by lecithin in a concentration-dependent manner. Further, RT-PCR showed that the expressions of Asbt and Mrp3 mRNAs were enhanced by all the bile salts, whereas lecithin reduced Asbt expression, but enhanced Mrp3 expression. Conclusions. These findings indicate that bile salts cause bile-duct cell damage through Asbt-mediated uptake, but that biliary lecithin physiologically inhibits such damage by reducing the expression of this transporter. In addition, the induction of Mrp3 expression by lecithin may play a role in inhibiting the accumulation of bile. Thus, the modulation of lecithin secretion into bile may be another important target for the treatment of biliary disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据