4.5 Article

Caspase-1 and poly (ADP-ribose) polymerase inhibitors may protect against peroxynitrite-induced neurotoxicity independent of their enzyme inhibitor activity

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 20, 期 7, 页码 1727-1736

出版社

WILEY
DOI: 10.1111/j.1460-9568.2004.03651.x

关键词

3-aminobenzamide; Ac-YVAD-cmk; ATP; cell death; 1,5-dihydroxyisoquinoline

资金

  1. NICHD NIH HHS [HD 18655] Funding Source: Medline
  2. NINDS NIH HHS [NS38475] Funding Source: Medline

向作者/读者索取更多资源

We investigated the mechanism of 3-morpholinosyndnomine (SIN-1) neurotoxicity in nearly pure neuronal cultures. In a simple saline solution, SIN-1 neurotoxicity was found to be mediated by peroxynitrite and independent of glutamate receptor activation [Y. Zhang & P.A. Rosenberg (2002) Eur. J. Neurosci, 16, 1015-1024]. To further study the mechanism of peroxynitrite toxicity to neurons we investigated the role of caspases and poly (ADP-ribose) polymerase (PARP) in this model system. Ac-Tyr-Val-Ala-Asp-chloromethyl ketone (Ac-YVAD-cmk), a specific caspase-1 inhibitor, completely blocked neurotoxicity as well as ATP depletion induced by SIN-1. However, a caspase-3 inhibitor and a pan-caspase inhibitor were both without effect. These results suggested that the protection of Ac-YVAD-cmk might not be due to its inhibition of caspase-1. Indeed, Western blot analysis and assay of caspase activity indicated that caspase activation was not involved in SIN-1 toxicity. Ac-YVAD-cmk also completely blocked in vitro protein nitration induced by SIN-1 or peroxynitrite, suggesting that Ac-YVAD-cmk may interact with peroxynitrite directly. Similarly, although activation of PARP is thought to be a major cause of peroxynitrite-induced ATP depletion, and two PARP inhibitors, 1,5-dihydroxyisoquinoline (DHQ) and 3-aminobenzamide (3-AB), completely prevented ATP depletion and neurotoxicity induced by SIN-1, SIN-1 did not increase poly (ADP-ribosyl)ation and PARP activity. Furthermore, DHQ and 3-AB completely prevented in vitro protein nitration induced by peroxynitrite, indicating that DHQ and 3-AB directly interact with peroxynitrite. Taken together, these results suggest that in the model system used here peroxynitrite neurotoxicity is independent of caspase and PARP activation, and therefore implicate a novel mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据