4.8 Article

Cycloalkene ozonolysis: Collisionally mediated mechanistic branching

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 39, 页码 12363-12373

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0485412

关键词

-

向作者/读者索取更多资源

Master equation calculations on a computational potential energy surface reveal that collisional stabilization at atmospheric pressure becomes important in the gas-phase ozonolysis of endocyclic alkenes for a carbon number between 8 and 15. Because the reaction products from endocyclic ozonolysis are tethered, this system is ideal for consideration of collisional energy transfer, as chemical activation is confined to a single reaction product. Collisional stabilization of the Criegee intermediate precedes collisional stabilization of the primary ozonide by roughly an order of magnitude in pressure. The stabilization of the Criegee intermediate leads to a dramatic transformation in the dominant oxidation pathway from a radical-forming process at low carbon number to a secondary ozonide-forming process at high carbon number. Secondary ozonide formation is important even for syn-isomer Criegee intermediates, contrary to previous speculation. We use substituted cyclohexenes as analogues for atmospherically important mono- and sesquiterpenes, which are major precursors for secondary organic aerosol formation in the atmosphere. Combining these calculations with literature experimental data, we conclude that the transformation from chemically activated to collisionally stabilized behavior most probably occurs between the mono- and sesquiterpenes, thus causing dramatically different atmospheric behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据