4.8 Article

p19ARF directly and differentially controls the functions of c-Myc independently of p53

期刊

NATURE
卷 431, 期 7009, 页码 712-717

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02958

关键词

-

向作者/读者索取更多资源

Increased expression of the oncogenic transcription factor c-Myc causes unregulated cell cycle progression(1). c-Myc can also cause apoptosis, but it is not known whether the activation and/or repression of c-Myc target genes mediates these diverse functions of c-Myc. Because unchecked cell cycle progression leads to hyperproliferation and tumorigenesis, it is essential for tumour suppressors, such as p53 and p19(ARF) (ARF), to curb cell cycle progression in response to increased c-Myc (refs 2, 3). Increased c-Myc has previously been shown to induce ARF expression, which leads to cell cycle arrest or apoptosis through the activation of p53 (ref. 4). Here we show that ARF can inhibit c-Myc by a unique and direct mechanism that is independent of p53. When c-Myc increases, ARF binds with c-Myc and dramatically blocks c-Myc's ability to activate transcription and induce hyperproliferation and transformation. In contrast, c-Myc's ability to repress transcription is unaffected by ARF and c-Myc-mediated apoptosis is enhanced. These differential effects of ARF on c-Myc function suggest that separate molecular mechanisms mediate c-Myc-induced hyperproliferation and apoptosis. This direct feedback mechanism represents a p53-independent checkpoint to prevent c-Myc-mediated tumorigenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据