4.6 Article Proceedings Paper

Microchip electrophoresis with hydrodynamic injection and waste-removing function for quantitative analysis

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1051, 期 1-2, 页码 69-74

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2004.08.040

关键词

microchip electrophoresis; quantitative analysis; hydrodynamic injection; kinase assay

向作者/读者索取更多资源

Quantitative analysis is problematic for microchip electrophoresis for several reasons including chip-to-chip variation, discontinuous sample re-loading, channel reconditioning, and electrokinetic injection bias. In this study, the capability for quantitative analysis on a flow-through based microchip electrophoresis, which provides continuous sample re-loading, channel washing, reconditioning and hydrodynamic injection as well as waste removing is demonstrated to be more quantifiable and more reproducible compared to manual electrokinetic injection method. Using the flow-through microchip with waste-removing function, FITC-labeled estrogen or Rhodamine B could be continuously analyzed without significant changes (R.S.D. < 6.6%) in signal intensity for over 3 h, which is sufficient for a complete set of quantitative analysis. With the use of a phosphorylated kinase substrate as the model, a calibration curve for quantitative analysis of phosphopeptides were constructed and results indicate that both R(2) value of the linearity and R.S.D. values of the peak intensity were around 0.9961 and 3.16%, respectively, without the use of an internal standard. These values were slightly improved to be around 0.9986 and 2.27%, respectively, with the use of a non-phosphopeptide counterpart as the internal standard. The potential of this flow-through device for the development of a kinase phosphorylation assay based on the quantitative method was also briefly discussed. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据