4.8 Article

Synchrotron diffraction study of deformation mechanisms in mineralized tendon

期刊

PHYSICAL REVIEW LETTERS
卷 93, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.93.158101

关键词

-

向作者/读者索取更多资源

The high stiffness and toughness of biomineralized tissues are related to the material deformation mechanisms at different levels of organization, from trabeculae and osteons at the micrometer level to the mineralized collagen fibrils at the nanometer length scale. Quantitatively little is known about the sub-micrometer deformation mechanisms under applied load. Using a parallel-fibred mineralized tissue from the turkey leg tendon as a model for the mineralized collagen fibrils, we used in situ tensile testing with synchrotron x-ray diffraction to measure the average fibril deformation with applied external strain. Diffraction peak splitting occurred at large strains, implying an inhomogeneous elongation of collagen fibrils. Scanning electron microscopy measurements lead us to conclude that the inhomogeneous mineralization in mineralized tendon is at the origin of the high fracture strain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据