4.7 Article

The magnetorotational instability in the Kerr metric

期刊

ASTROPHYSICAL JOURNAL
卷 614, 期 1, 页码 309-313

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/423443

关键词

accretion, accretion disks; black hole physics; MHD

向作者/读者索取更多资源

The magnetorotational instability (MRI) is the leading candidate for driving turbulence, angular momentum transport, and accretion in astrophysical disks. I consider the linear theory of the MRI in a thin, equatorial disk in the Kerr metric. I begin by analyzing a mechanical model for the MRI that consists of two point masses on nearly circular orbits connected by a spring. I then develop a local Cartesian coordinate system for thin, equatorial Kerr disks. In this local model general relativistic effects manifest themselves solely through changes in the Coriolis parameter and in the tidal expansion of the effective potential. The MRI can be analyzed in the context of the local model using nonrelativistic magnetohydrodynamics, and the growth rates agree with those found in the mechanical model. The maximum growth rate measured by a circular orbit observer differs from a naive estimate using Newtonian gravity by a factor that varies between 1 and 4/3 for all radii and for all a/M.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据