4.4 Article

Single-molecule dynamics reveal an altered conformation for the autoinhibitory domain of plasma membrane Ca2+-ATPase bound to oxidatively modified calmodulin

期刊

BIOCHEMISTRY
卷 43, 期 40, 页码 12937-12944

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi048806p

关键词

-

资金

  1. NIA NIH HHS [P01 AG12993, AG17996] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM58715] Funding Source: Medline

向作者/读者索取更多资源

We used single-molecule polarization modulation methods to investigate the activation of the plasma membrane Ca2+-ATPase (PMCA) by oxidized calmodulin (CaM). Oxidative modification of methionine residues of CaM to their corresponding sulfoxides is known to inhibit the ability of CaM to activate PMCA. Single-molecule polarization methods were used to measure the orientational mobility of fluorescently labeled oxidized CaM bound to PMCA. We previously identified two distinct populations of PMCA-CaM complexes characterized by high and low orientational mobilities, with the low-mobility population appearing at a subsaturating Ca2+ Concentration [Osborn, K. D., et al. (2004) Biophys. J. 87, 1892-1899]. We proposed that the high-mobility population corresponds to PMCA-CaM complexes with a dissociated (and mobile) autoinhibitory domain, whereas the low-mobility population corresponds to PMCA-CaM complexes where the autoinhibitory domain is not dissociated and therefore the enzyme is not active. In the present experiments, performed with PMCA complexed with oxidatively modified CaM at a saturating Ca2+ concentration, we found a large population of molecules with an orientationally immobile autoinhibitory domain. In contrast, native CaM bound to PMCA was characterized almost entirely by the more orientationally mobile population at a similar Ca2+ concentration. The addition of I mM ATP to complexes of oxidized CaM with PMCA reduced but did not abolish the low-mobility population. These results indicate that the decline in the ability of oxidized CaM to activate PMCA results at least in part from its reduced ability to induce conformational changes in PMCA that result in dissociation of the autoinhibitory domain after CaM binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据