4.6 Article

Molecular orbital theory study on surface complex structures of phosphates to iron hydroxides: Calculation of vibrational frequencies and adsorption energies

期刊

LANGMUIR
卷 20, 期 21, 页码 9249-9254

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la0487444

关键词

-

向作者/读者索取更多资源

Quantum mechanical calculations were applied to resolve controversies about phosphate surface complexes on iron hydroxides. Six possible surface complexes were modeled: deprotonated, monoprotonated, and diprotonated versions of bridging bidentate and monodentate complexes. The calculated frequencies were compared to experimental IR frequency data (Persson et al. J. Colloid Interface Sci. 1996, 177, 263-275; Arai and Sparks J. Colloid Interface Sci. 2001, 241, 317-326.). This study suggests that the surface complexes change depending on pH. Four possible species are a diprotonated bidentate complex at pH 4-6, either a deprotonated bidentate or a monoprotonated monodentate complex at pH 7.5-7.9, and a deprotonated monodentate complex at pH 12.8. In addition, reaction energies were calculated for adsorption from aqueous solution to determine relative stability to form a monoprotonated monodentate complex and a deprotonated bidentate complex. According to these results, the monoprotonated monodentate complex should be favored. Vibrational frequencies of the monoprotonated monodentate and deprotonated bidentate complexes were analyzed with electronic effects on the Fe-OP and H-OP bonds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据