4.7 Article

CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios:: 1.: Inverse modeling of source processes -: art. no. GB4004

期刊

GLOBAL BIOGEOCHEMICAL CYCLES
卷 18, 期 4, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2004GB002223

关键词

inverse model; isotopic signature; methane

向作者/读者索取更多资源

A time-dependent inverse modeling approach that estimates the global magnitude of atmospheric methane sources from the observed spatiotemporal distribution of atmospheric CH4, C-13/C-12 isotopic ratios, and a priori estimates of the source strengths is presented. Relative to the a priori source estimates, the inverse model calls for increased CH4 flux from sources with strong spatial footprints in the tropics and Southern Hemisphere and decreases in sources in the Northern Hemisphere. The CH4 and C-13/C-12 isotopic ratio observations suggest an unusually high CH4 flux from swamps (similar to200 +/- 44 Tg CH4/yr) and biomass burning (88 +/- 18 Tg CH4/yr) with relatively low estimates of emissions from bogs (similar to20 +/- 14 Tg CH4/yr), and landfills (35 +/- 14 Tg CH4/yr). The model results support the hypothesis that the 1998 CH4 growth rate anomaly was caused in part by a large increase in CH4 production from wetlands, and indicate that wetland sources were about 40 Tg CH4/yr higher in 1998 than 1999.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据