4.8 Article

Thermodynamics of nitroaromatic compound adsorption from water by smectite clay

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 38, 期 20, 页码 5433-5442

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es035054y

关键词

-

向作者/读者索取更多资源

Nitroaromatic compounds enter the environment through their use as explosives, pesticides, solvents, and synthetic intermediates in the manufacturing of dyes, perfumes, and drugs. Recent studies have found that many nitroaromatic compounds are strongly retained by smectites, especially K+-saturated smectites. Sorption occurs when nitroaromatic compounds replace water associated with the clay and form complexes between K+ and -NO2 groups. This study seeks to further understand nitroaromatic-clay interactions from the viewpoint of energetics. Adsorption isotherms of 1,3-dinitrobenzene, 1,4-dinitrobenzene, and 1,3,5-trinitrobenzene from aqueous solution by K+- and Ca2+- saturated smectite (SWy-2) were measured at several temperatures between 4 degreesC and 37 degreesC to determine the molar differential adsorption enthalpies. Adsorption was found to be an exothermic process on both homoionic K+- and Ca2+- smectite. The smaller adsorption enthalpy on Ca-SWy-2 was consistent with its much smaller adsorption capacity for nitroaromatics compared to K-SWy-2. Our best estimate for the enthalpy of 1,3,5-trinitrobenzene interactions with K-SWy-2 is -124 kJ/mol, which is referenced to gas-phase 1,3,5-trinitrobenzene, corrected for the displacement of interlayer water, and can be directly compared with quantum chemical enthalpies from the literature. Our comparable estimates for 1,3- and 1,4-dinitrobenzene interaction enthalpies are near -90 kJ/mol. We conclude that our adsorption enthalpy results are consistent with the hypothesis that nitroaromatic compounds are sorbed strongly by K-smectites because they form inner- and/or outer-sphere complexes with K+ cations in clay interlayers. Indeed, the basal spacings of rewetted clay films in the presence of nitroaromatic compounds imply that water molecules cannot effectively compete with the adsorbed nitrobenzenes for reactive sites on K-SWy-2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据