4.6 Article

Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor β1 stimulation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 42, 页码 43725-43734

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M407368200

关键词

-

资金

  1. NHLBI NIH HHS [HL079419] Funding Source: Medline

向作者/读者索取更多资源

Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor beta1 (TGF-beta) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-beta induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-beta on MSCs, we employed a proteomic strategy to analyze the effect of TGF-beta on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and we identified similar to30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-beta. The proteins regulated by TGF-beta included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-beta increased the expression of smooth muscle alpha-actin and decreased the expression of gelsolin. Overexpression of gelsolin inhibited TGF-beta-induced assembly of smooth muscle alpha-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of alpha-actin and actin filaments without significantly affecting alpha-actin expression. These results suggest that TGF-beta coordinates the increase of alpha-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据