4.6 Article

Microwave loss mechanisms in Ba0.25Sr0.75TiO3 thin film varactors

期刊

JOURNAL OF APPLIED PHYSICS
卷 96, 期 8, 页码 4642-4649

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1789631

关键词

-

向作者/读者索取更多资源

Parallel-plate Au(Pt)/Ba0.25Sr0.75TiO3/(Pt)Au thin film varactors were fabricated on high resistance Si substrates and characterized at dc, rf, and microwave frequencies. In the frequency range 10-45 GHz the varactors show relatively low losses, with loss tangent less than 0.025 at 45 GHz. Due to the thick and highly conductive Pt/Au electrodes the metal losses are less than 10%. However, the loss tangent of the ferroelectric film is still three to five times higher than that in Ba0.27Sr0.73TiO3 single crystal. The analysis of the dc field dependences of loss tangent and permittivity in a wide frequency range shows that these additional losses are mainly due to the charged defects. Extrapolation of measured low frequency (1 MHz) loss tangents to the microwave region using the power law omega(1/3) is in good agreement with experiment. The dc current through the varactor is found to be controlled by Schottky emission and Poole-Frenkel mechanisms depending on the polarity. The Poole-Frenkel mode is associated with field enhanced thermal excitation of charge carriers from internal traps. The trap activation energy (about 0.15 eV) determined from the Poole-Frenkel mode agrees well with the energy level of the oxygen vacancy. We assume that the oxygen vacancies within the grain boundaries of the ferroelectric film act as charged defects and cause additional (extrinsic) microwave losses. The possible correlation between the film's internal strains and density of the oxygen vacancies are discussed. The knowledge of the extrinsic loss mechanism and corresponding microstructure defects is useful in optimization of the varactor design, deposition, annealing process, and further improvement of the varactor performance. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据