4.7 Article

A model for damage coalescence in heterogeneous multi-phase materials

期刊

ACTA MATERIALIA
卷 52, 期 18, 页码 5255-5263

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2004.07.009

关键词

fracture; damage; metal matrix composite; ductility; self-consistent model

向作者/读者索取更多资源

Previous models for the deformation of two-phase materials with heterogeneous second phase distributions have been extended to account for damage coalescence. As in the previous work, the model is based on a self-consistent analysis and uses an incremental, tangent modulus approach. Damage coalescence is treated through a micro-crack linkage model that is sensitive to both the local volume fraction of damaged second phase particles and the local stress acting between damaged particles. This work suggests that micro-crack linkage rapidly leads to a loss of global stability and is critical in limiting the ductility exhibited by materials, at least for those exhibiting damage by particle cracking. Thus experimental data for metal-matrix composites agree well with the predictions of the micro-crack linkage model. Ductility predictions resulting from the model are sensitive to both the volume fraction and matrix work hardening exponent. By varying the latter over a range typical of aluminum alloys the model captures the experimentally observed range of ductility for a wide range of Al-based MMCs. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据