4.7 Article

Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum

期刊

AQUATIC TOXICOLOGY
卷 70, 期 1, 页码 23-40

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2004.06.011

关键词

pharmaceutical mixture; Myriophyllum sibiricum; Lemna gibba; toxicity; endpoint sensitivity

向作者/读者索取更多资源

Pharmaceuticals have been detected in surface waters of the US and Europe, originating largely from two sources, sewage effluent and agricultural runoff. These compounds often occur as mixtures leading to potential combined effects. In order to investigate the effects of a realistic pharmaceutical mixture on an ecosystem, a study utilizing 15 of 12,000 L aquatic microcosms treated with eight common pharmaceuticals (atorvastatin, acetaminophen, caffeine, sulfamethoxazole, carbamazepine, levofloxacin, sertraline, and trimethoprim) at total (summed) molar concentrations of 0, 0.044, 0.608, 2.664, and 24.538 mumol/L (n = 3) was conducted. Phytotoxicity was assessed on a variety of somatic and pigment endpoints in rooted (Myriophyllum sibiricum) and floating (Lemna gibba) macrophytes over a 35-day period. EC10, EC25 and EC50 values were calculated for each endpoint exhibiting a concentration-dependent response. Generally, M. sibiricum and L. gibba displayed similar sensitivity to the pharmaceutical mixture, with phytotoxic injury evident in both species, which was concentration dependent. Through single compound 7-day daily static renewal toxicity tests with L. gibba, the sulfonamide antibiotic sulfamethoxazole, the fluoroquinolone antibiotic levofloxacin and the blood lipid regulator atorvastatin were found to be the only compounds to elicit phytotoxic effects in the concentration range utilized (0-1000 mug/L). Atorvastatin concentration was highly correlated to decreased pigment content in L. gibba, likely inhibiting the known target enzyme HMGR, the rate-limiting enzyme in isoprenoid biosynthesis. Hazard quotients were calculated for both microcosm and laboratory studies; the highest HQ values were 0.235 (L. gibba) and 0.051 (L. gibba), which are below the threshold value of I for chronic risks. The microcosm data suggest that at an ecological effect size of >20%, biologically significant risks are low for L. gibba and M. sibiricum exposed to similar mixtures of pharmaceutical compounds. For M. sibiricum and L. gibba, respective minimum differences of 5 and 1%, were detectable, however, these effect sizes are not considered ecologically significant. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据