4.6 Article

The α1.α2 network of collagen IV -: Reinforced stabilization of the noncollagenous domain-1 by noncovalent forces and the absence of Met-Lys cross-links

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 43, 页码 44723-44730

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M406344200

关键词

-

资金

  1. NCRR NIH HHS [RR017806] Funding Source: Medline
  2. NIDDK NIH HHS [DK62524, DK18381, DK065123] Funding Source: Medline

向作者/读者索取更多资源

Collagen IV networks are present in all metazoa and underlie epithelia as a component of basement membranes. The networks are essential for tissue function and are defective in disease. They are assembled by the oligomerization of triple-helical protomers that are linked end-to-end. At the C terminus, two protomers are linked head-to-head by interactions of their trimeric noncollagenous domains, forming a hexamer structure. This linkage in the alpha1.alpha2 network is stabilized by a putative covalent Met-Lys cross-link between the trimer-trimer interface (Than, M. E., Henrich, S., Huber, R., Ries, A., Mann, K., Kuhn, K., Timpl, R., Bourenkov, G. P., Bartunik, H. D., and Bode, W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6607-6612) forming a nonreducible dimer that connects the hexamer. In the present study, this cross-link was further investigated by: (a) comparing the 1.5-Angstrom resolution crystal structures of the alpha1.alpha2 hexamers from bovine placenta and lens capsule basement membranes, (b) mass spectrometric analysis of monomer and nonreducible dimer subunits of placenta basement membrane hexamers, and (c) hexamer dissociation/re-association studies. The findings rule out the novel Met-Lys cross-link, as well as other covalent cross-links, but establish that the nonreducible dimer is an inherent structural feature of a subpopulation of hexamers. The dimers reflect the reinforced stabilization, by noncovalent forces, of the connection between two adjoining protomers of a network. The reinforcement extends to other types of collagen IV networks, and it underlies the cryptic nature of a B-cell epitope of the alpha3.alpha4.alpha5 hexamer, implicating the stabilization event in the etiology and pathogenesis of Goodpasture autoimmune disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据