4.6 Article

Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependant on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 43, 页码 44996-45003

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M406327200

关键词

-

向作者/读者索取更多资源

Ca2+-regulated exocytosis is required for rapid resealing of disrupted plasma membranes. It has been previously demonstrated that repeated membrane disruptions reseal more quickly than the initial wound and that this facilitated response requires the transcription factor cAMP-response element-binding protein ( CREB). This study examines the signaling pathway between membrane disruption and CREB-dependent gene expression in 3T3 fibroblasts. A reporter gene assay using pCRE-d2EGFP revealed that membrane disruption induced CRE-mediated transcription. Immunofluorescence observations suggested that membrane disruption activated CREB, p38 mitogen-activated protein kinase ( p38 MAPK), and MAPK kinase3/6, the kinase responsible for activation of p38 MAPK. CREB phosphorylation upon membrane disruption was inhibited by a specific p38 MAPK inhibitor, SB203580. Both CRE-mediated transcription and long-term potentiation of membrane resealing and wound-induced exocytosis were suppressed when cells were wounded in the presence of either SB203580 or Go-6976, a specific protein kinase C (PKC) inhibitor. Furthermore, activation of MAPK kinase3/6 was impaired by PKC inhibition during membrane disruption. These results suggest that PKC mediates the stimulation of CREB-dependent gene expression through a p38 MAPK pathway upon membrane disruption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据