4.6 Article

Light and redox control of photosynthesis gene expression in Bradyrhizobium -: Dual roles of two PpsR

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 43, 页码 44407-44416

出版社

ELSEVIER
DOI: 10.1074/jbc.M408039200

关键词

-

向作者/读者索取更多资源

The two closely related bacteria Bradyrhizobium and Rhodopseudomonas palustris show an unusual mechanism of regulation of photosystem formation by light thanks to a bacteriophytochrome that antirepresses the regulator PpsR. In these two bacteria, we found out, unexpectedly, that two ppsR genes are present. We show that the two Bradyrhizobium PpsR proteins exert antagonistic effects in the regulation of photosystem formation with a classical repressor role for PpsR2 and an unexpected activator role for PpsR1. DNase I footprint analysis show that both PpsR bind to the same DNA TGTN(12)ACA motif that is present in tandem in the bchC promoter and the crtED intergenic region. Interestingly, the cycA and aerR promoter regions that contain only one conserved palindrome are recognized by PpsR2, but not PpsR1. Further biochemical analyses indicate that PpsR1 only is redox sensitive through the formation of an intermolecular disulfide bond, which changes its oligomerization state from a tetramer to an octamer under oxidizing conditions. Moreover, PpsR1 presents a higher DNA affinity under its reduced form in contrast to what has been previously found for PpsR or its homolog CrtJ from the Rhodobacter species. These results suggest that regulation of photosystem synthesis in Bradyrhizobium involves two PpsR competing for the binding to the same photosynthesis genes and this competition might be modulated by two factors: light via the antagonistic action of a bacteriophytochrome on PpsR2 and redox potential via the switch of PpsR1 oligomerization state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据