4.8 Article

Amplified quenching of a conjugated polyelectrolyte by cyanine dyes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 42, 页码 13685-13694

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja046856b

关键词

-

向作者/读者索取更多资源

The conjugated polyelectrolyte PPESO3 features a poly(phenylene ethynylene) backbone substituted with anionic 3-sulfonatopropyloxy groups. PPESO3 is quenched very efficiently (K-SV > 10(6) M-1) by cationic energy transfer quenchers in an amplified quenching process. In the present investigation, steady-state and picosecond time-resolved fluorescence spectroscopy are used to examine amplified quenching of PPESO3 by a series of cyanine dyes via singlet-singlet energy transfer. The goal of this work is to understand the mechanism of amplified quenching and to characterize important parameters that govern the amplification process. Steady-state fluorescence quenching of PPESO3 by three cationic oxacarbocyanine dyes in methanol solution shows that the quenching efficiency does not correlate with the Forster radius computed from spectral overlap of the PPESO3 fluorescence with the cyanines' absorption. The quenching efficiency is controlled by the stability of the polymer-dye association complex. When quenching studies are carried out in water where PPESO3 is aggregated, changes observed in the absorption and fluorescence spectra of 1,1',3,3,3',3'-hexamethylindotricarbocyanine iodide (HMIDC) indicate that the polymer templates the formation of a J-aggregate of the dye. The fluorescence dynamics in the PPESO3/HMIDC system were probed by time-resolved upconversion and the results show that PPESO3 to HMIDC energy transfer occurs on two distinctive time scales. At low HMIDC concentration, the dynamics are dominated by an energy transfer pathway with a time scale faster than 4 ps. With increasing HMIDC concentration, an energy pathway with a time scale of 0.1-1 ns is active. The prompt pathway (tau < 4 ps) is attributed to quenching of delocalized PPESO3 excitons created near the HMIDC association site, whereas the slow phase is attributed to intra- and interchain exciton diffusion to the HMIDC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据