4.5 Review

Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides

期刊

SOLID STATE IONICS
卷 174, 期 1-4, 页码 279-286

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ssi.2004.07.036

关键词

conductivity; oxide ion conduction; fluorites; perovskites

向作者/读者索取更多资源

Many metal oxides of fluorite and perovskite related structures are oxide ion conductors, which have practical applications in devices such as oxygen sensors, solid oxide fuel cells (SOFC) and electrolysers. Several structural and thermodynamic parameters such as (1) critical radius of the pathway for the oxide ion movement, (2) free lattice volume, and (3) average metal-oxide bond energy have been proposed as predictors of high oxide ion conductivity. We discuss how these parameters all depend on ionic radii, and therefore, some of these may be redundant. Furthermore, we explore the interrelations among such parameters for fluorite and perovskite oxides by considering their sensitivities to the individual ionic radii. Based on experimental data available in the literature, it is argued that lattice distortion (lattice stress and deviation from cubic symmetry) due to ion radii mismatch determines the ionic conductivity to a very large extent, and that lattice distortion is of much greater importance than many other proposed parameters. In case of the perovskites, the charge of the B-site ion is also of major importance. (C) 2004 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据