4.6 Article

Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 β-lactamase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 44, 页码 46295-46303

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M407606200

关键词

-

向作者/读者索取更多资源

The conserved Class A beta-lactamase active site residue Tyr-105 was substituted by saturation mutagenesis in TEM-1 alpha-lactamase from Escherichia coli in order to clarify its role in enzyme activity and in substrate stabilization and discrimination. Minimum inhibitory concentrations were calculated for E. coli cells harboring each Y105X mutant in the presence of various penicillin and cephalosporin antibiotics. We found that only aromatic residues as well as asparagine replacements conferred high in vivo survival rates for all substrates tested. At position 105, the small residues alanine and glycine provide weak substrate discrimination as evidenced by the difference in benzylpenicillin hydrolysis relative to cephalothin, two typical penicillin and cephalosporin antibiotics. Kinetic analyses of mutants of interest revealed that the Y105X replacements have a greater effect on K-m than k(cat), highlighting the importance of Tyr-105 in substrate recognition. Finally, by performing a short molecular dynamics study on a restricted set of Y105X mutants of TEM-1, we found that the strong aromatic bias observed at position 105 in Class A beta-lactamases is primarily defined by a structural requirement, selecting planar residues that form a stabilizing wall to the active site. The adopted conformation of residue 105 prevents detrimental steric interactions with the substrate molecule in the active site cavity and provides a rationalization for the strong aromatic bias found in nature at this position among Class A beta-lactamases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据