4.8 Article

Negative entropy of mixing for vanadium-platinum solutions

期刊

PHYSICAL REVIEW LETTERS
卷 93, 期 18, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.93.185704

关键词

-

向作者/读者索取更多资源

The phonon densities of states for pure vanadium and the solid solutions V-6.25% Ni, Pd, Pt were determined from inelastic neutron scattering measurements. The solute atoms caused a large stiffening of the phonons, resulting in large, negative vibrational entropies of mixing. For V-6.25%Pt, the negative vibrational entropy of mixing exceeds the conventional positive chemical entropy of mixing. This negative total entropy of mixing should extend to lower concentrations of Pt, and the effect on the bcc solvus line is discussed. The experimental data were inverted to obtain interatomic force constants by using a Born-von Karman model with an iterative optimization algorithm. The stiffening of bonds responsible for the decrease of entropy was found to occur mainly in first-nearest-neighbor solute-host bonds, and correlates in part with the solute metallic radius.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据