4.5 Article

Enteric excretion of baicalein, a flavone of scutellariae radix, via glucuronidation in rat: Involvement of multidrug resistance-associated protein 2

期刊

PHARMACEUTICAL RESEARCH
卷 21, 期 11, 页码 2120-2126

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/B:PHAM.0000048205.02478.b5

关键词

baicalin; baicalein; glucuronidation; intestinal excretion; MRP2

向作者/读者索取更多资源

Purpose. Baicalin (BG) and its aglycone, baicalein (B), are strong antioxidants and have various pharmacological actions. The purpose of this study was to evaluate efflux of BG from rat intestinal mucosal cell following glucuronidation of B absorbed after oral administration of B. Methods. The absorption and excretion of BG and B were evaluated in rats using the in situ jejunal loop technique and in vitro jejunal everted sac experiments. BG and B levels were determined by high-performance liquid chromatography with electro-chemical detection to ensure selectivity and high sensitivity. Results. A large amount (30.4% recovery) of BG, but no B, was detected in the intestinal lumens of germ-free rats 4 h after oral administration of B (12.1 mg/kg), in comparison with a substantial recovery (55.1%) of unabsorbed BG 4 h after its administration. During the in situ rat jejunal loop absorption experiment, B disappeared rapidly, and 8% of the lost B was excreted into the loop as BG 20 min after infusing 0.1 mM B. In an in vitro absorption experiment using everted rat jejunal sac, BG also appeared outside the sac, accompanied by the disappearance of B from the outer (mucosal) side. However, very little of B was transferred to the inner (serosal) side of the sac, and only a trace of BG was detected inside the sac. Thus, in both the loop and the everted sac systems, the efflux of BG from the mucosal surface was saturated with the concentration of B added. Moreover, the efflux rate of BG in the everted jejunal sac from Eisai hyperbilirubinemic rat (EHBR) was significantly lower by 56.4% than that from Sprague-Dawley rat. Conclusions. These results indicate that, in rat, a large proportion of any B absorbed is retained, transformed into BG within the intestinal mucosal cells, and coordinately excreted through multidrug resistance-associated protein 2 (MRP2) into the intestinal lumen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据