4.4 Article

Generation of multiple pharmacophore hypotheses using multiobjective optimisation techniques

期刊

JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
卷 18, 期 11, 页码 665-682

出版社

SPRINGER
DOI: 10.1007/s10822-004-5523-7

关键词

alignment; conformational analysis; evolutionary algorithms; MOGA; molecular overlay; multiobjective genetic algorithm; multiobjective optimisation; pharmacophore identification

向作者/读者索取更多资源

Pharmacophore methods provide a way of establishing a structure--activity relationship for a series of known active ligands. Often, there are several plausible hypotheses that could explain the same set of ligands and, in such cases, it is important that the chemist is presented with alternatives that can be tested with different synthetic compounds. Existing pharmacophore methods involve either generating an ensemble of conformers and considering each conformer of each ligand in turn or exploring conformational space on-the-fly. The ensemble methods tend to produce a large number of hypotheses and require considerable effort to analyse the results, whereas methods that vary conformation on-the-fly typically generate a single solution that represents one possible hypothesis, even though several might exist. We describe a new method for generating multiple pharmacophore hypotheses with full conformational flexibility being explored on-the-fly. The method is based on multiobjective evolutionary algorithm techniques and is designed to search for an ensemble of diverse yet plausible overlays which can then be presented to the chemist for further investigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据