4.5 Article

Haemodynamic determinants of the mitral valve closure sound: a finite element study

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/BF02345218

关键词

fluid-structure interaction; microstructure; acoustics; LS-DYNA; validation

向作者/读者索取更多资源

Automatic acoustic classification and diagnosis of mitral valve. disease remain outstanding biomedical problems. Although considerable attention has been given to the evolution of signal processing techniques, the mechanics of the first heart sound generation has been largely overlooked. In this study, the haemodynamic determinants of the first heart sound were examined in a computational model. Specifically, the relationship of the transvalvular pressure and its maximum derivative to the time-frequency content of the acoustic pressure was examined. To model the transient vibrations of the mitral valve apparatus bathed in a blood medium, a dynamic, non-linear, fluid-coupled finite element model of the mitral valve leaflets and chordae tendinae was constructed. It was found that the root mean squared (RMS), acoustic pressure varied linearly (r(2) = 0.99) from 0.010 to 0.259 mmHg, following an increase in maximum dP/dt from 415 to 12470 mm Hg s(-1). Over that same range, peak frequency varied non-linearly from 59.6 to 88.1 Hz. An increase in left-ventricular pressure at coaptation from 22.5 to 58.5 mm Hg resulted in a linear (r(2) = 0.91) rise in RMS acoustic pressure from 0.017 to 1.41 mmHg. This rise in transmitral pressure was accompanied by a non-linear rise in peak frequency from 63.5 to 74.1 Hz. The relationship between the transvalvular pressure and its derivative and the time-frequency content of the first heart sound has been examined comprehensively in a computational model for the first time. Results suggest that classification schemes should embed both of these variables for more accurate classification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据