4.6 Article

Quantum-confined Stark shifts of charged exciton complexes in quantum dots

期刊

PHYSICAL REVIEW B
卷 70, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.201308

关键词

-

向作者/读者索取更多资源

We probe the permanent excitonic dipole of neutral and positively charged excitons in individual In0.5Ga0.5As self-assembled quantum dots using Stark effect perturbation spectroscopy. A systematic reduction of the permanent excitonic dipole is found as excess holes are controllably added to individual dots containing a single exciton (X-0). Calculations of the few-body states show that this effect arises from a strong, Coulomb-mediated, spatial redistribution of the few-body wave function upon charging. By investigating correlations between the permanent dipole, polarizability, and the emission energy of X-0 for many dots, we also show that the strength of the In:Ga composition gradient is related to the absolute In content.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据