4.8 Article

Discoloration and mineralization of orange II using different heterogeneous catalysts containing Fe: A comparative study

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 38, 期 21, 页码 5773-5778

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es049811j

关键词

-

向作者/读者索取更多资源

Four heterogeneous catalysts containing Fe including a bentonite-clay-based Fe nanocomposite (Fe-B), hematite (alpha-Fe2O3), amorphous FeOOH, and calcined FeOOH (denoted as FeOOH-M) were employed for the photo-Fenton discoloration and mineralization of 0.2 mM Orange II in the presence of 10 mM H2O2 and 8 W UVC at two different initial solution pH values (3.0 and 6.13). It was found that, at an initial solution pH of 3.0, their photocatalytic activities follow the order Fe-B > FeOOH, FeOOH-M > alpha-N2O3. When the Fe-B nanocomposite, FeOOH, and FeOOH-M were used as heterogeneous catalysts, both heterogeneous and homogeneous photo-Fenton reactions were responsible for the discoloration and mineralization of 0.2 mM Orange II because homogeneous photo-Fenton reaction occurred due to the presence of Fe ions leached from the catalysts. At an initial solution pH of 6.6, their photocatalytic activities still follow the order Fe-B > FeOOH, FeOOH-M much greater than alpha-Fe2O3. However, only heterogeneous photo-Fenton reaction accounted for the discoloration and mineralization of 0.2 mM Orange II because Fe leaching from the catalysts was significantly depressed. In the case of alpha-Fe2O3 as a catalyst, whether at an initial solution pH of 3.0 or 6.6, only heterogeneous photo-Fenton reaction happened for the discoloration and mineralization of 0.2 mM Orange II because Fe leaching from the catalyst is negligible. The apparent discoloration kinetics of Orange II with the four catalysts at two different initial solution pH values was also investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据